AN

Week 4

New Ways of Living

Daniel Carmody, Martina Mazzarello, Simone Mora

11:S951 Senseable City: Data and Analytics 3/4/2022



Learning objectives

SENSING THE ENVIRONMENT PHYSICAL- DIGITAL LAYERS
Past and contemporary possibilities of Scales, tools, applications to change our ways
scanning the environment of living

SENSING HUMAN CONNECTIONS SOCIAL NETWORKS' THEORY

Digital traces of people’s communication in a Definitions and applications of network
campus environment science



NEW WAYS OF LIVING

The view to the south from the Empire State Building on Nov. 24, 1966, one Kansas City during the late 60s affected by both industrial pollution and car
of New York’s worst smog days. Photo NYT. smog. Photo EPA Archive.
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Before the rise of digital technologies, there were specific types of buildings, factories or offices for every occupation: a newspaper, for
instance, needed a pressroom, a printing room, and all sorts of equipment to get the paper out on the street every day.



NEW WAYS OF LIVING

A House in a Box You Control by waving Your Hand, a way to turn any small apartment into a more livable one. A project of the MIT Media Lab (2011).



NEW WAYS OF LIVING

Manuel Castells (1950 — 2000) the rise of a digital age society defined by “[...] new forms of spatial arrangements”. With the Digital revolution (2000),
Work and leisure in post-industrial cities don't need a particular spatial configuration anymore



NEW WAYS OF LIVING

How data can support new ways of living?

How are we these information?



Evolution of sensing



NEW WAYS OF LIVING

18.000 BCE — 800s
as sensors

900s - 2022
sensors



Human as sensor
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Historical evolution
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1663, John Graunt carries out the first recorded experiment in statistical data analysis, data to provide a warning system for bubonic



Historical evolution

Bevans’ 1913 Columbia University doctoral thesis on London factory workers, annotating information about working hours and spare time.
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HOW WORKINGMEN SPEND THEIR SPARE TIME
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At the Saloon, the number of hours spent by the Transporta-
tion Group is almost three times as great as for any of the other
groups. The order of Occupations and time spent at the Saloon is
the following: Transportation 1299, Miscellancous 4.5%, Domes-
tic 4.29, Metal Trades 3.49%, Building Trades 3.5%. Merchants
and Dealers 2,3%, Professional 1.8%, Textiles 1.8%, Clerical 1.4%,.

Comparison between the Domestic Group and the Building
Trades Group is interesting. The Building Trades Group in Table
4 has 41.8% of men reporting attendance at the Saloon, while the
Domestic Group ly 38.8%; but in numbers of Iy
in the Saloon the Domestic Group reverses the proportion, indicat-
ing a greater popularity of the Saloon with them than with the
Building Trades Group, the percentage of hours at Saloon being,
Domestic 4,2%, Building Trades 3.59.

Further comparisons of Occupation Groups in the percentage
of hours spent at the different social and other agencies is readily
possible from this table.
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Table 9 represents the specified choices of spending spare time
during ooe week made by 294 Single men. This table is in almost
exact agreement with Table 2, wherein the 806 Single and Married.
men were combined. Tn comparing the Single men of Table 9 with
the Married men of Table 10, the same general effect is seen to be
produced by the shorter or longer workday.

Use of Table 9 can be made by noting the social and other
agencies which are the most popular with groups of men working
the shorter number of hours and which have a regular or almost &
regular decline in attendance as the working hours incresse. This
is the case, it will be observed, with Labor Unions, Clubs and Lodges,
Public Lectures, Art Gallerics, Private Study, Theatres, Dances,
Pool, Family, Magazines, and Books. Men in the 11 hour and over
group have the highest percentage at Church and Synagogue,
Motion Pictures, Saloon, Cards and visiting Friends.

In Table 10 with 512 Married men grouped according to speci-
fied Hours of Labor, the highest degree of popularity of the follow=
ing social and other agencies seems dependent upon the shoeter
working hours: Labor Unions, Clubs and Lodges, Public Lecture,
Art Galleries, Private Study, Theatre, Magazine and Books; while
the percentage of specified choices for Married men working the

https://archive.org/details/howworkingmenspeOObevarich/page/28/mode/2up



Environmental Sensors

Photo Penn State University Archive
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First air quality sensor

A CAGE EUEL® OF OXYGEN

TO REVIVE CANARIES THAT ARE OVERCOME BY
GAS IN COAL MINES

Mining worker in the 800s Christal Pollock "The Canary in the Coal Mine," Journal of Avian Medicine and Surgery 30(4), 386-391
https://doi.org/10.1647/1082-6742-30.4.386



https://doi.org/10.1647/1082-6742-30.4.386

First air quality sensor
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Sensing platforms

X CITIZEN SENSING: A TooL k1t

smartcitizen.me purpleair.com



Historical evolution

New world of growing data



How to untap the
to support new ways of living?



Sensing the environment

The view to the south from the Empire State Building on Nov. 24, 1966, one Kansas City during the late 60s affected by both industrial pollution and car
of New York’s worst smog days. Photo NYT. smog. Photo EPA Archive.



City Scanner






AIR POLLUTION * 92% of the world population breath unhealthy air (WHO)
* Short term: asthma, cardiovascular diseases

* Long term: cognitive decline and Alzheimer's disease (Killian & Kitazawa, 2018)

« Costs more than USS5 trillion (Word Bank)
* In London, poor AQ leads to 650,000 sick days a year (Kilbane-Dawe et al., 2014)
 Spanish consumers spend up to $50M less on days with poor AQ (Rogers et al., 2016)

« Can vary up to 8x within the same city block



Cooler: Neighborhoods
next to parks and those
with plenty of tree cover
saw significantly cooler
temperatures on a hot
summer afternoon: as
low as 87°F.

Hotter: On the same day,
residential neighborhoods
east of downtown saw
hotspots reach over 101°F.

o

<— COOLER  HOTTER —

87° 89°  92° QFOF 98°  101° 103°

¢ Nadja Popovich and Christopher Flavelle
' The New York Times



EXTREME HEAT « Associated with higher rates of cardiovascular diseases, cancer

« Compounds the negative effects of air pollution

« Widely varies as a function of socioeconomic status and
race/ethnicity

« Every year extreme heat events kill more Americans than other

extreme weather combined






Fig. 1 Maps showing the
distributions of PurpleAir and
EPA mointors. a Number of
PurpleAir sensors/census tract in
the United States as of Feb 22,
2020. b Number of EPA
monitors that report PM, 5 from
2015 to Feb 22, 2020 per census
tract in the United States Only
census tracts with monitors are
shown in this analysis.
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deSouza, Priyanka, and Patrick L. Kinney.
"On the distribution of low-cost PM2. 5
sensors in the US: demographic and air
quality associations.”
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B)

epidemiology
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Can we use mobile sensors to
map environmental data cities?



ISTOCK.COM/BANKSPHOTOS
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Street View

Lab-on-wheels approach
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Challenge #1
Feasibility — How many sensors?






How many sensors do we need to cover a city?

Segment coverage percent vs. number of taxis (March 18, 2011)
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How many daily trips
cover the city?

just 1% of trips to get
the desired coverage of
50% of street segments

Average
coverage

red curve : model prediction
black curve : real data

a 1o, b

0.8/
—— 06,
< 0.4/
o) Yangpu
0.0 ’ - - . - .
0 5000 10000 15000 20000 25000 30000
Ny
€ 10,
0.8
—~~ 0.6 |
Qoal
941 Chicago
0.0! v v v v v " v -
0 5000 10000 15000 20000 25000 30000 35000 40000
Nt
e 10, f
0.8
—~ 0.6
=04
- San fran
2079 5000 10000 15000 20000 25000
h
Beijing
o 500 1000 1500 2000 2500 3000
Ny
J
sl Hangzhou
00°=3 500 1000 1500 2000 2500
Ny

e NYC

0 2500 5000 7500 10000 12500 15000 17500
Ny

Vienna
0 2000 4000 6000 8000 10000 12000 14000

Singapore
0 2000 4000 6000 8000 10000 12000 14000

Changsha
o S00 1000 1500 2000 2500 3000
Ny
1.0,
0.8/
0.6
0.4
0.21 Shanghai
=3 500 1000 1500 2000 2500
Ny

(# vehicles / # trips)



b P Shanghai ’ / | Vienna

O’'Keeffe, Kevin P., et al. "Quantifying the sensing power of vehicle fleets." P%Qed/ngs of the National Academy of Sciences 116.26 (201 9): 1275?_212757 $ v 3 Ay



Challenge #2
Prototyping









Solar-powered

High-efficiency photovoltaic panels (PVs) can
be tiled to fit irradiance characteristics of differ-
ent cities, enabling continuous operation.

4mm Perspex
A layer that will act as the roof and add robust-
ness to the device.

Core services onboard

Include 3G modem, GPS, temperature & hu-
midity, accelerometer. During test deployments
a particulate counter (OPC-N2) was included.

Adaptive real-time streaming
The device can adapt data sampling and
broadcasting

Multi-purpose, customizable architecture
Support a wide range of sensors: e.g. particle
counters, gas meters and thermal cameras.

GPS and Cellular Antennas
Space for antennas that isn't directly beneath
the solar panel which can block connectivity.

Shock Resistance
3D-printed shell in carbon fiber reinforced
nylon, provides resistance and lightweight.

Magnetic bindings

For easy anchoring to the vehicle, allowing to
reconfiguration the sensing fleet on-demand.
Each magnet develops a force of circa 200N.

Mora et al., 2019
IEEE loT World Forum Best Paper Award






Challenge #3
Deployment



The Fourth Wave

ABOUT

VIDEO GALLERY AIR QUALITY METHANE-SATELLITE ENVIRONMENTAL JUSTICE

Tech innovators should pay attention to
NYC’s new air pollution monitoring
pilot

EDF@s Environmental Defense Fund

Jan 22 - 4 min read

¥y KO

By Harold Rickenbacker, Manager, Clean Air & Innovation, Environmental
Defense Fund
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DAILYaNEWS

= SECTIONS Q SEARCH

Who's the comedian who told fr_‘ Yes, we have to talk about '@ GoFundMe for baseball coach Y% Nicki Minaj's brother, Jelani HEAR IT

Malia Obama to Please shut < the Kobe Bryant rape case killed in Kobe Bryant el Maraj, sentenced to 25 years was wa

the f--- up’ during standup... N helicopter crash raises more... M to life for raping stepdaughter for requ
[ News |

NYC municipal vehicles to test local air quality for pollution in
South Bronx with mobile sensors

ﬁ By ANNA SANDERS " vy O

NEW YORK DAILY NEWS JAN 21, 2020 00 PM

New York City vehicles will be equipped with mobile air quality sensors developed by the Senseable City Lab at MIT to find pollution
hotspots.



PILOT STUDIES







Challenge #4
Use cases — what research questions can we answer?



Palisades Park
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Community Engagement
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Integrating local, qualitative knowledge
with quantitative data

Towards pollution source estimation

- Use case definition




Sensing people’s lives

A House in a Box You Control by Waving Your Hand, a way to turn any small apartment into a more livable one. A project of the MIT Media Lab (2011).



BUSAN EDC



Busan EDC

In Busan, South Korea, 300 people
started to experiment a



Busan EDC

Korea

Joong%ng In association with
Daily & Newiork@imes

All Articles Why National Business Culture Entertainment Sports
SIS,

Monday - o o

February 7, 2022 [L[] dictionary | +A | -A =

From home appliances to
telemedicine, smart city project offers
next-generation living

The Eco Delta Smart City in Busan [K-WATER]



a unigue
concept of
$1.8 billion government-funded smart C|ty project



3000 applications
54 households,
300 residents
for the next 3 years
willing to live for free
in exchange for their data.




- ranging from
energy consumption patterns to health data,
home appliance usage and other behavioral information



Data possibilities

Public Area Inside the Residence

Al, loT Platform |

Air quality control |
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\ TR OEE

Recognizes motions of people
and vehicles, and controls CCTVs

Smart Pole(8 Location)

Fall w (0]
type(1) type(1) type(6)

™

Real-time info. of status such as
current load, compress & overflow

Smart Waste(8 Location, Trash
collected to separate location)
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Solar-powered bench, provide
amenity such as cellphone charge

Smart Bench (4 location)
A Type(3 spots) B Type(1 spot)

Eco-friendly farm utilizing rainwater,
Growing crops and vegetables
Smart Farm (2 location)
[Cultivation Bldg. (1),

Service Bldg. (1)]
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( Official K-Water Selection) ( Samsung C&T Proposed)

Category Key Technolgy Key Technolgy

@ Hydrophilic information platform @ smart home - energy

Data possibilities

@ Real-time water care @ smart home - air quality

Private Space

® Real-time health management ® smart home - safety / security

Healthcare

@ Wellness center @ smart home - convenience

® Al sports center ® Moving awning / motion roof

® Smart pole ® EV Charging Station

@ Robot café @ smart parking control & monitor

Neighborhood

Smart management robot smart pedestrian crosswalk

Public Space

© Smart bench © smart irrigation system

Smart trash can smart solar energy

Lifestyle

@ Intelligent video management

@ Smart farm g )
system (security/surveillance)




Residents completed moving in on

Data collection has started



People’s point of view

From the project to the reality



People’s point of view

Is a student at the department of civil engineering at
Pusan National University



People’s point of view

“The biggest difference that | feel now is that | don't have to get up
from the bed to turn the light off at night,”
“I can command it with my voice, which is actually more
convenient than you think, once you get used to it.”



People’s point of view

most convenient thing is the TV, which
“tells us when our laundry is done or when the oven’s
finished with cooking.”



Data possibilities

How do we design a network of urban sensors centered
on ?



Data possibilities

Data can provide on lives and behaviors

monitoring and alerting | services & experiences | research



Data possibilities

How to create engaging spatial in the
Busan Eco City while at the same time?



Sensing human connections

Work and leisure in post-industrial cities don’t need a particular spatial configuration anymore, how people are communicating?



Understanding new ways of
living



Random encounters

Imagine the following scenario:

chance encounter

You (A) go to lunch with one of your friends (B). — - — local bridge



Group participation

Definition: Alocal bridge in a network is an edge which is not part of any triangle in the network.

Question: What are other scenarios under which local bridges might form in a social network?

chance encounter

— — — |local bridge

B C
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Random encounters

Imagine the following scenario:
chance encounter

You (A) go to lunch with one of your friends (B). — — — local bridge

B
Your coauthor (C) goes to lunch with one of their ia

friends (D), who you don’t know. <

A
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Random encounters

Imagine the following scenario:
chance encounter

You (A) go to lunch with one of your friends (B). — — — local bridge

B
Your coauthor (C) goes to lunch with one of their

friends (D), who you don’t know. @
At lunch you and your coauthor run into one < / >
another, and to be polite you introduce B and D

to each other.



Random encounters

Imagine the following scenario:
chance encounter

You (A) go to lunch with one of your friends (B). — — — local bridge

B
Your coauthor (C) goes to lunch with one of their

friends (D), who you don’t know. @
At lunch you and your coauthor run into one < / >
another, and to be polite you introduce B and D

to each other.

Now B and D have formed a connection even
though they have no common friend.



Local bridges

Definition: Alocal bridge in a network is an edge which is not part of any triangle in the network.

In other words, a local bridge is a connection
between people who have no mutual
friends. — — — |local bridge

B C

chance encounter

Local bridges are topologically

“weak ties” in the sense of Granovetter. @ . @
We will use the phrase “local bridge” < / >
and “weak tie” interchangeably. i

A D



Local bridges

Definition: Alocal bridge in a network is an edge which is not part of any triangle in the network.

Local bridges are important for the spread of

information in networks. chance encounter

— — — |local bridge

By definition, removing local bridges B G
increases the average shortest

path length in a network more @ . @
than removing edges embedded /
in triangles (with the same betweenness i S~ g

A D

centrality).



Random encounters without co-location

Consider the following modification of the original scenario:

You (A) go to a Zoom seminar with your
friend (B).

Your coauthor (C) goes to the same
seminar with their friend (D).

You (A) see that (C) is connected, but
you have no way of knowing that they
are friends with (D), and (B) and (D) are
never introduced.



Broad question: Does co-location promote the formation
of local bridges in communication networks?



MIT COVID-19 policy

MIT implemented a mandatory remote-work policy which went
into full effect midway through the Spring 2020 semester on
March 23, 2020.

The Fall 2020 and Spring 2021 semesters were completely
remote.

At the start of the Fall 2021 semester on September 8, 2021
MIT partially re-opened its campus, with many researchers
going to their offices 2-3 times per week.



Experimental setup

We study the daily email networks of MIT researchers from
December 2019-October 2021.

There is an edge between researchers on a given day if both
researchers sent an email to one another that day.

The shift to remote work on March 23, 2020 acted as an
intervention, so we can study its causal effect on local bridges
in the email network.




Are the networks obviously damaged by remote work?
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Are the networks obviously damaged by remote work?
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Not really.



Refined question: Does working nearby on campus on a
given day cause an increase in the probability to form a
local bridge in the email network that day?



The existence of a causal link



Number of weak ties

Interrupted time series (regression discontinuity design)
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1. The response variable is continuous with respect to time near the cutoff on March 23, 2020

2. Subjects cannot precisely manipulate the assignment variable to determine their treatment status



Interrupted time series (regression discontinuity design)

Number of devices on MIT campus
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Number of connected devices

Assumptions:

1. The response variable is continuous with respect to time near the cutoff on March 23, 2020

2. Subjects cannot precisely manipulate the assignment variable to determine their treatment
status



Interrupted time series (regression discontinuity design)
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Interrupted time series (regression discontinuity design)

I
1000 & : —— RDD fitted value
___1;7 » 200 : -==March 23, 2020
0 I Number of new weak ties
(7)) p—y I
o 800 ~ I
< I 3 300 :
g | - |
2 600 | 2 .
o | 5 200 \
O
-g 400 : QL) *k %k
= I , -g
z : —— RDD fitted value 5 100
200 : ~== March 23, 2020 = e,
: Number of weak ties 0 ;
1 |
N P S A N, ? P, ol N 2 P (S R AN N o 00, S
O™ A0 A0V A0V A0 -/ - - A O° OV OV 00V 00 : : A
QL Q7 QL Q1 40P ¥ rLo"l Q" oSF" QL QL QL Q1 o8P o @0@ VAR A2
Date Date

T is the impact of the policy

Y=a+7D+ B:D(X —c) +¢

Y =a+7D+Bi(X —c)+ Ba(X —¢)* + fsD(X — ) + B D(X

—c)’+e



Number of weak ties

Bayesian structural time series

We construct a synthetic counterfactual from values of the time series prior to the intervention as
well as weekend data (when most researchers are not in the office) to predict the effect of
banning office-work during the weekdays.
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Number of weak ties

Bayesian structural time series

The shaded regions show a 95% posterior predictive interval, we want the shaded regions away
from the black line in order to conclude statistically significant results.
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Number of weak ties

Bayesian structural time series

The number of local bridges after the implementation of mandatory remote work is significantly
below the predicted values, indicating a significant and lost-lasting drop in the number of weak
ties due to mandatory remote work.
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Number of weak ties

Bayesian structural time series

On the other hand, we don’t yet see any statistically significant effect of mandatory remote-work
on the number of new weak ties. We'll return to this soon.
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Number of weak ties

Bayesian structural time series: cumulative effect

We can also plot the cumulative effect over time. In particular there is a statistically significant
drop of more than 4800 local bridges due to mandatory remote work over the course of the

data.
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But wait...

It appears as if there is no significant causal effect of mandatory remote work on the formation of
new local bridges, is our hypothesis incorrect?
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Stratifying by office distance

Let W, denote the collection of local bridges in the daily email network on day d which have not
appeared on any previous day.

Divide W, into four strata:

Same-office: ties between people with offices in the same room

Close-distance: ties between people whose offices are between 0 and 150 meters apart
Medium-distance: ties between people whose offices are between 150 and 650 meters apart

Long-distance: ties between people whose offices are between more than 650 meters apart



Number of new ties

Number of new ties
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The number of new local bridges between same-office researchers increases
compared to what’s expected!
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This is less interesting than it
seems.

Every person in our dataset was
required to be active before the
pandemic, so people in the same
lab would almost certainly already
have met.

This could correspond to
researchers who were previously
working together having to use
email to schedule Zoom meetings.



Number of new ties
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The cumulative number of new local bridges between close-office researchers
decreases significantly.

This is consistent with the idea that co-location causes new weak tie formation.
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The number of new local bridges between medium/long-distance researchers does

not change.

This is also consistent with the idea that co-location causes new weak tie formation, as
we wouldn’t expect researchers who work far away on campus to be affected by co-

location even before the pandemic.
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What happens when we re-introduce co-location?

There is a weak, but statistically significant increase in the number of weak ties at the start of the
Fall 2021 semester compared to the Fall 2020 semester.
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The story so far

Nearby SENNNSNY lLocal bridge

offices Some formation
mechanism

Results so far are consistent with the existence of a mechanism via which lack of co-
location causes local bridge deterioration.



ldentifying a mechanism



Goals of a candidate mechanism

Unknown ground truth
behavioral mechanism
controlling tie formation

Candidate mechanism

Properties of local bridges
formed under true
mechanism

Properties of local bridges
formed under candidate
mechanism




The proposed mechanism
Fix once and for all a collection of nodes N and a bucket of possible edges E between
those nodes.

Each day, form a network by performing two steps of weighted draws without
replacement from the bucket of edges.

In the first step, the probability of an edge is determined by:
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The proposed mechanism

Fix once and for all a collection of nodes N and a bucket of possible edges E between
those nodes.

Each day, form a network by performing two steps of weighted draws without
replacement from the bucket of edges.

In the first step, the probability of an edge is determined by:
* Focal closure (are the researchers in the same unit?)

« Link centric preferential attachment (has the edge been seen before?)
« Co-location (are the offices of the researchers close?)

In the second step, the probability of an edge is determined by the k
same factors plus
« Triadic closure (does the edge close a triangle in the network

from step 17)



The proposed mechanism

Step 1:

pexr(e) Y. Colo@Q+(1-7() Y -lo(e)@

Qe{P,O,N,D} Qe{P,0O,N,D} Q
Step 2:

oo Y Colo@@+(1-r() Y 5-1o(9@

Qe{P,O,N,D,F} Qe{P,0,N,D,F} Q

The co-location factors C, are multiplicative factors which either amplify or dampen the effects
of the other factors Q based on whether the edge is between co-located researchers,
represented by the binary variable t(e).



The proposed mechanism

Step 1:

poxrle) > Cola(@@+(1-re) Y oolo()

Qe{P,O,N,D} Qe{P,O,N,D}

Step 2:

oo Y Colo@@+(1-r() Y 5-1o(9@

Qe{P,O,N,D,F} Qe{P,0,N,D,F} Q

P controls the weekly periodicity of the model — edges are more likely to be selected if they
appeared exactly one week ago.



The proposed mechanism

Step 1:

poxrle) > Cola(@@+(1-re) Y oolo()

Qe{P,O,N,D} Qe{P,O,N,D}

Step 2:

oo Y Colo@@+(1-r() Y 5-1o(9@

Qe{P,O,N,D,F} Qe{P,0,N,D,F} Q

O corresponds to link-centric preferential attachment — edges are more likely to be selected
depending on their frequency of past appearance.



The proposed mechanism

Step 1:

poxrle) > Cola(@@+(1-re) Y oolo()

Qe{P,O,N,D} Qe{P,O,N,D}

Step 2:

poxr(e) Y. Colo(@@+(1-7() Y —le(e)Q

Qe{P,O,N,D,F} Qe{P,0,N,D,F} Q

N is a small constant corresponding to the probability of choosing a previously unseen edge.



The proposed mechanism

Step 1:

poxrle) > Cola(@@+(1-re) Y oolo()

Qe{P,O,N,D} Qe{P,O,N,D}

Step 2:

poxr(e) Y. Colo(@@+(1-7() Y —le(e)Q

Qe{P,O,N,D,F} Qe{P,0,N,D,F} Q

D controls the probability of choosing an edge between people in the same research unit.



The proposed mechanism

Step 1:

poxrle) > Cola(@@+(1-re) Y oolo()

Qe{P,O,N,D} Qe{P,O,N,D}

Step 2:

oo Y Colo@@+(1-r() Y 5-1o(9@

Qe{P,O,N,D,F} Qe{P,0,N,D,F} Q

F is a large constant which makes edges that close triangles in the network formed in step 1
more likely to be chosen during step 2.



Simulated experiment

We simulate the empirical conditions as follows:

1. Initialize an edge memory dictionary with two weeks of real, weekday data from
February 2020

2. Each day form a new network by the drawing edges according to the distribution
outlined above, updating the edge memory dictionary as we go

3. On March 23, 2020 remove the possibility for co-location by setting t(e) = 0 for all
candidate edges e.

4. On September 8, 2021 add back the possibility for co-location by restoring t(e) to
its original value.



Simulated experiment: Does removing the possibility for
co-location reproduce the dynamics observed in the
empirical data?
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As a robustness
check, if we leave
7 unchanged, we
observe no drops
in the number of
local bridges.



How does co-location affect each factor?

ot Y Colo@Q+1-7() Y S-1g()@

Qe{P,0,N,D,F} Qe{P,O,N,D,F} %

Cp < 1 :co-location inhibits periodicity

Co = 1 :co-location has no effect on already established connections

Cy > 1 :co-location promotes the formation of new ties

Cp < 1 :co-location inhibits within-lab emails (because people talk in-person instead)

Cr <1 :co-location leads to less cliquey behavior



Implications

poxr@ Y Colo@@+(1-7() Y S-1g()@

Qe{P,0,N,D,F} Qe{P,O,N,D,F} %

Cp < 1 :co-location reduces redundancy of information
Cy > 1 :co-location promotes the formation of new ties

Cr <1 :co-location leads to less cliquey behavior

Co-location is important for updating the sources from which researchers receive novel
information.

Co-location is important for re-organization of research networks over time.



Implications
Co-location is important for updating the sources from which researchers receive novel
information.

- Given that information tends to spread more slowly through email networks than
predicted by typical epidemic models (Iribarren-Moro), missing local bridges which are capable
of spreading information to distant corners of a network is disastrous.

Co-location is important for re-organization of research networks over time.

- The ability to re-organize is vital for large-scale human cooperation when
approaching complex tasks (Rand-Arbesman-Christakis).



A brief introduction to networks



The history of network science
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7 bridges of Koningsberg
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Random graphs

In 1959, Erdés and Renyi (in parallel with Gilbert) began the systematic study of
random graphs

Today, the phrase « random graph » typically refers to G(n,p) — a graph with n nodes
such that each pair of nodes is connected independently with probability p.

Erdos and Renyi showed that many properties of random graphs satisfy thresholding phenomena — there is a
critical threshold of edge probability where the graph property suddenly changes.




Network models

The Erd6s-Renyi-Gilbert model of random graphs produces networks with different
properties than most real-world social networks

In 1998 Watts and Strogatz introduced a new network model better representing
community structures observed in real life networks.

In 1965 Price introduced a new network model explaining the observed power law

degree distribution of citation networks. In 1998 this model was popularized by Albert and
Barabsi, who introduced the phrase « preferential attachment ».




Learning objectives

Understand the basic definitions of network science

Load and manipulate social networks in python

Compute standard network metrics for given communication/social networks

Understand the real-world implications of network structure



Why networks?

In general, asking the question, « Does this data have a network representation? »
can be extremely fruitful.

The study of networks is both mathematically and algorithmically mature, so phrasing
problems in the language of networks gives one access to a host of tools and
methodologies.

A good example of using the language of networks to get results on a seemingly
unrelated problem was the lab’s work on the « minimum fleet problem » (which
| was not part of).



Networks

Definition: A network G is a set N of nodes together with a set E < 2¥of pairs of nodes called edges.

Networks are useful for representing symmetric
relationships.

For example, a network might represent:
- landmasses and bridges connecting them
- friendship relations in a social network
- coauthor relationships between researchers




Directed networks

Definition: A directed network G is a set N of nodes together with a set E € N x N of directed edges.

Directed networks are useful for representing
actions, transitions, and causal relationships.

For example, a directed network might represent:
- paper citations (node A cites node B)
- human migrations (people from location A

travel to location B)
- Neural networks (the activation of neuron A

causes the activation of neuron B)




Weighted networks

Definition: A (directed) network G is weighted if there is a function w : E - R which assigns to each
edge a weight.

Both directed and undirected networks can be
weighted. Weights may represent things like counts,
speeds, capacities, relationship strength, etc.




Group participation

Question: What are some other examples of phenomena or data that can be represented with a
weighted network?

Question: What are some other examples of phenomena or data that can be represented with a
weighted directed network?



Basic network metrics

Number of nodes:
Number of edges:

Number of components:
Size of largest component:
Average degree:

Clustering coefficient:




Basic network metrics

The number of nhodes and number of edges are self
explanatory.

- The number of components is the number of “islands” Ve
in the network — the maximal subsets such that any « §5 ‘
node in the subset can be reached from any other A
node in the subset through a path. ' {

- The degree of a node is the number of edges AL
connected to that node. For communication networks . ais w
this answers the question “on average how many L
others does each person talk to?” !

- The average clustering coefficient is the average 5P e >
proportion of triangles that each node belongs to. R
“What percentage of the people I talk to talk to each '
other?”



Basic network metrics

Number of nodes: 543
Number of edges: 480 L,

Number of components: 121 .

Size of largest component: 176

Average degree: 1.77 Y

Clustering coefficient: .09



Centrality measures

Which nodes are central in the network?
It depends on the definition of central....

Two typical measures are closeness and betweenness

Closeness centrality: How long does it take to reach other nodes from a given node?

Betweenness centrality: How many shortest paths go through the given node?



MIT email collaboration

—> Nodes color by Closeness centrality

—> Nodes dimension by Betweenness centrality (scale 10-100)
—> Edges thickness by n. Emails exchanged

Thursday FEBRUARY 20th, 2020



MIT email collaboration
EEE —————————
—> Nodes color by Closeness centrality

—> Nodes dimension by Betweenness centrality (scale 10-100)
—> Edges thickness by n. Emails exchanged

Thursday FEBRUARY 25th, 2021
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