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“Cities are the most persistent human construct” — L. Mumford
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SOME EUROPEAN CAPITAL CITIES

City

Amsterdam

Berlin

Lisbon

London
Madrid
Paris

Rome
Stockholm
Warsaw

Vienna




MOBILITY IN SPACE AND TIME

Mobility is a phenomenon that can occur at different scales in space and time

Migrations
(few times in a lifetime, hundreds/thousands km)

/O
Touristic trips
(few times in a year, hundreds/thousands km)

distance

Commuting trips
(Several times a week, few/tens of km)

o

>
time (freq)




WHAT DO WE KNOW ABOUT MOBILITY?

Zipf-Gibrat's law (1930s)

(a) Rank-size distributions of cities
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WHAT DO WE KNOW ABOUT MOBILITY?

Central Place Theory (Christaller, 1930s)
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WHAT DO WE KNOW ABOUT MOBILITY?

Space syntax (Hillier, 1970s)
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WHAT DO WE KNOW ABOUT MOBILITY?

Traditional forms of data collection about mobility include:
v Census
v Travel surveys

v' Small-scale travel diaries/observations
v



CENSUS DATA

Collected every several years (typically 10)

+ covers the entire population
exhaustive socio-economic profile of travelers

_|_

- very high cost
- updated only every several years
- can be used only to track only long-term movement (migrations)



TRAVEL SURVEYS

At regular intervals (a few years); on-purpose collection

+ iInformation on travel mode/reason for travel
good socio-economic profile of travelers

_|_

- high cost
- imited coverage (few thousands travelers at most)
- iInaccurate information about travel habits



SMALL SCALE DIARIES/OBSERVATION STUDIES

on-purpose collection

information on travel mode/reason for travel
some socio-economic profile of travelers available

+ +

- high cost
- very limited coverage (few hundreds travelers at most)
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LARGE SCALE, HIGH RESOLUTION MOBILITY TRACKING
A

Explorer Returner

o}

L. Pappalardo et al., "Returners and explorers dichotomy in
human mobility”, Nature Communications, 2015



NEW MOBILITY DATA

New forms of data collection about mobility include:
v' Cell phone data

GPS

Flow counters

Head counters

NN X X



MOBILITY AND PRIVACY
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CELL PHONE DATA SETS

Collected for billing purposes
Typical content:

ID of caller and receiver

Call start time and duration

Call type (voice, text, etc.)

ID of cell tower the caller/receiver is associated with

AN

O O O O

Collected for keeping track of a user in the network
Typical content:

ID of tracked user

Event type (includes data connections)
Event time

ID of cell tower the user is associated with

AN

O O O O



FROM CELL PHONE DATA TO MOBILITY TRACES
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SPATIAL GRANULARITY
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CELL PHONE DATA SETS

opportunistic collection

+ very good coverage (hundred thousands/million users)
+ good spatial and temporal granularity
+ record real movements of huge number of users

- difficult to obtain

- large but non representative sample of the population
- little/no socio-economic profile of users



CDR VS NETWORK SIGNALING DATA

feature

CDR

NetSign

spatial granularity

cell tower

cell tower

temporal granularity

Few to hundred

hundreds

home detection

Yes

Yes

work detection

Yes

Yes

Detect single movements

No

Yes

Trajectory reconstruction (cell)

No

Yes

Trave

time detection

No

~y

Trave

mode detection

No

Trave

purpose

No

No




CELL PHONE DATA AND MOBILITY PATTERNS

—  Mon —  Wed
Tue Thu

Sun

T
.

12AM 8AM 4PM 12AM 12AM 8AM 4PM 12AM



GPS DATA SETS

AN

AN

Collected for billing/tracking purposes
Typical content:

ID of vehicle

Trip start time and (lat,long) location
Trip end time and (lat,long) location
Trip info

O O O O

Collected by location-based apps
Typical content:

o UserlID
o Eventtype
o Eventtime and (lat,long) location



CDR VS GPS DATA

feature CDR GPS
spatial granularity cell tower location £ 10m

temporal granularity Several mins/h 1 sec

home detection Yes Yes

work detection Yes Yes

Detect single movements No Yes

Trajectory reconstruction (cell) No Yes

Travel time detection NoO Yes

Travel mode detection No Yes

Travel purpose No =




GPS DATA AND MAP MATCHING

GPS vertices I* ®

Matched line
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Rejected route

(implied speed too fast)




DATA PROCESSING WORK FLOW

research data data data pre- research

question acquisition exploration processing results




DATA PRE-PROCESSING

v" Remove noisy/incomplete/inconsistent data, e.g:
o Records where start/end of a trip is missing
o Data points in “inconsistent” areas (water, forests, etc.)
o Records corresponding to “impossible” trips (e.g., a trip with an
excessively high speed)

v Select a subset of the original sample, e.q.:

o Users with at least x CDR events in a day
o Trips that start/end in a specific area
o Users for which home location can be detected



SPATIO-TEMPORAL BINNING
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Visitation Law
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The Auto Mile - Norwood MA
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THE INVERSE LAW

@
a

r - distance

I f

f - frequency

D

]




CENTRAL PLACE THEORY

Christaller - 1930




THE INVERSE LAW: WHAT WE
KNOW?

r - distance
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P
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EXISTING MODELS

Original radiation model Network cost-based radiation model

Radiation model — (Simini et al, Nature 2012)



THE INVERSE LAW: WHAT ABOUT FREQUENCY?

r - distance
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UNIVERSAL URBAN MOBILITY LAW




CENTRAL PLACE THEORY?
CONFIRMED!

0 e ;
i 1 e 40km _ ) 40km

Christaller - 1930



PREFERENTIAL EXPLORATION
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APPLICATIONS?

§4
Traffic optimization




APPLICATIONS?




EPIDEMICS and
MOBILITY



INTERPLAY BETWEEN MOBILITY AND DISEASE

Articles I

ope .« e +
Effects of human mobility restrictions on the spread L)
of COVID-19 in Shenzhen, China: a modelling study using "
mobile phone data
Ying Zhou, Renzhe Xu, Dongsheng Hu, Yang Yue, Qingquan Li, jizhe Xia m
Summary
Background Restricting human mobility is an effective strategy used to control disease spread. However, whether mobility  Lancet bigital Health 2020 KING PAPER SERIES
restriction is a proportional response to control the ongoing COVID-19 pandemic is unclear. We aimed to develop %¢417-24
a model that can quantify the potential effects of various intracity mobility restrictions on the spread of COVID-19. ::'0":'“"’:"_"‘“?"‘:' "
enzhen University Heal
Science Center, Shenzhen, l'

Methods In this modelling study, we used anonymous and aggregated mobile phone sightings data to build  cyina v zhou Pho, D Hu Pho);
a susceptible—exposed-infectious-recovered transmission model for COVID-19 based on the city of Shenzhen, China.  institute for Advanced Study www.nature.com/scientificreports
We simulated how disease spread changed when we varied the type and magnitude of mobility restrictions in different (R XuMsc) and Guangdong Key
transmission scenarios, with variables such as the basic reproductive number (R,), length of infectious period, and :‘:"‘:ﬂ"’u""“
infarmatics, Department of

the number of initial cases. Urban Informatics (Y Yu PhD,

' HUMAN MOBILITY RESTRICTIONS AND THE SPREAD OF THE NOVEL CORONAVIRUS SCIENTIFIC
(2019-NCOV) IN CHINA REPORTS
Hanming Fang )
Long Wang natureresearch
Yang Yang

L L L L terplay between
' “numanmopinity and mosquito
borne diseases in urban

environments

Emanuele Massaro (', Daniel Kondor(? & Carlo Ratti%>




SEIR EPIDEMIC MODELING

10,000 agents follow the real trajectories of mobile phone users in New York City and Dakar,
Senegal
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SEIR EPIDEMIC MODELING

As they encounter infected agents, they
become exposed

Susceptible

J B: Probability of becoming exposed to

the disease over the course of one day
proportional to number of infected people

within a given radius of you :
Exposed

J o Probability of becoming infected on

" any given day after exposure .;:-_. / .
= 1/average latency period e Ko 0 C

_ Probability of recovery on any given 3 s W A ® o
v: day after becoming infectious B e SVl e _ &
= 1/average infection length s, Tl RN Rt

Recovered Vou-d

Ry = 3.58, chen 2020



RESTRICTING R AND F

Within this framework, we can restrict radius of travel r... and frequency of return f

PATERSON

How does epidemic size after 30 days change with r and f?
How does spatial diffusion of disease after 30 days change with r and f?



RESULTS: EPIDEMIC SIZE
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RESULTS: DISEASE DIFFUSION




RESULTS: DISEASE DIFFUSION




RESULTS: DISEASE DIFFUSION

M statistic

Relationship between
disease dispersion and r, f
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RESULTS

Epidemic size
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HubCab









AN




HubCab is an interactive visualization that invites Taxi Pickup Taxi Dropoff
you to explore the ways in which cver 170 million West 50th Street West 51st Street




SHARING TWO TRIPS
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LEGACY APPROACH

Variation of Traveler Salesman Problem
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UNSTRUCTURED SEARCH SPACE
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SHAREABILITY NETWORKS




SHAREABILITY CONDITION
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SHAREABILITY RESULTS
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Oracle Model

Online Model

| l | |

100 150 Maximur%%gay A (sec) 250 300

P. Santi, G. Resta, M. Szell, S. Sobolevsky, S. H. Strogatz, C. Ratti,"Quantifying the Benefits of Vehicle Pooling with
Shareability Networks”,Proc. National Academy of Science, Vol. 111, n. 37, pp. 13290-13294, 2014




SHAREABLE CITIES

Pickup Passenger 2 Dropoff Passenger 2

Pickup Passenger 1




Shareability
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CAN WE MODEL SHAREABILITY?

Input
Fa
3 P
Trip generation rate A
Average car speed v
Delay tolerance A
City area A
Output £
i 3)

Percentage s of shareable trips

A A3 p?
A

S X

Shareability shadow



SHAREABILITY MODEL ACCURACY
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SHAREABLE CITIES

Project in collaboration
with UBER

| New York city 99.9%

| Paris 88.8%

| Barcelona 87.4%

| Munich 74.7%

| Singapore 69.3%

| Istanbul 64.8%

| Vienna 63.6%

| Santiago 59.1%

| Delhi NCT 58.0%

| Beijing 57.3%

| San Francisco 57.1%

| Sao Paulo 56.6%

| Milan 55.8%

| Glasgow 51.5%

| Curitiba 51.0%

| Mexico City 49.6%

| Vancouver 47.7%

| Madrid 45.7%

| Rio De Janeiro 44.1%

| Moscow 41.4%

| Los Angeles 40.6%

| Amsterdam 40.1%

| Toronto 39.7%

| Johannesburg 39.6%

| Prague 33.8%

| Warsaw 31.6%




Minimum Fleet



CURRENT TAXI SITUATION
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MINIMUM FLEET NETWORK MODEL

Driving Driving Waiting Driving
with passenger to pick up in location with passenger
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Can a vehicle dropping a passenger at B reach C
before trip C—D starts?

YES O—— O
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SHAREABILITY NETWORK
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Addressing the minimum fleet problem in
on-demand urban mobility

M. M. Vazifeh!'*, P. Santil2, G. Resta, S. H. Strogatz® & C. Rattil*4

Information and communication technologies have opened
the way to new solutions for urban mobility that provide better
ways to match individuals with on-demand vehicles. However, a
fundamental unsolved problem is how best to size and operate a fleet
of vehicles, given a certain demand for personal mobility. Previous
studies' either do not provide a scalable solution or require
changes in human attitudes towards mobility. Here we provide a
network-based solution to the following ‘minimum fleet problem,
given a collection of trips (specified by origin, destination and start
time), of how to determine the minimum number of vehicles needed
to serve all the trips without incurring any delay to the passengers.
By introducing the notion of a ‘vehicle-sharing network;, we present
an optimal computationally efficient solution to the problem, as well
as a nearly optimal solution amenable to real-time implementation.
We test both solutions on a dataset of 150 million taxi trips taken in
the city of New York over one year®. The real-time implementation
of the method with near-optimal service levels allows a 30 per cent
reduction in fleet size compared to current taxi operation. Although
constraints on driver availability and the existence of abnormal trip
demands may lead to a relatively larger optimal value for the fleet
size than that predicted here, the fleet size remains robust for a
wide range of variations in historical trip demand. These predicted
reductions in fleet size follow directly from a reorganization of
taxi dispatching that could be implemented with a simple urban
app; they do not assume ride sharing’~%, nor require changes to
regulations, business models, or human attitudes towards mobility
to become effective. Our results could become even more relevant
in the years ahead as fleets of networked, self-driving cars become
commonplace'®'%,

Two trends—the rise of the autonomous and connected car, and the
emergence of a ‘sharing economy’'™!! of transportation—seem poised
to revolutionize the way personal mobility needs will be addressed in
cities. The way current modes of transportation such as the private
car, taxi or bus operate will be challenged and increasingly replaced by
personalized, on-demand mobility systems operated by vehicle fleets,

crrvrilar 44 warhat ~eavsvamioc lilra T Thar amd Txdd ~fEar TEcii~h fromde ~mi

In what follows, we solve the ‘minimum fleet problem’ for the general
case of on-demand mobility, and show that its solution for a specific
case—taxi trips—could lead to breakthroughs in operational efficiency.
To the best of our knowledge, no publicly available solution currently
exists to address this minimum fleet-size problem at the urban scale
for on-demand mobility in both private and public sectors. On the one
hand, accurate methods based on mathematical programming (as tra-
ditionally used in the design of transportation systems'=>?) can handle
only a few thousand trips or vehicles at most, which is well below the
hundreds of thousands or even millions of trips or vehicles routinely
operating in large cities. On the other hand, city-scale studies'” are
obtained using a model of transportation based on aggregated mobility
data and Euclidean spatial assumptions, and hence lack the resolu-
tion necessary to estimate the urban-scale benefits of vehicle sharing
accurately.

We start from the notion of the shareability network introduced in
ref. 7, which did not focus on the dispatching of vehicles. The type of
shareability network introduced here is profoundly different from the
type studied previously: it models the sharing of vehicles, whereas pre-
vious networks’~ modelled the sharing of rides. The main methodo-
logical contribution of this Letter is to show how this vehicle-sharing
network can be translated into an exact formulation of the minimum
fleet problem as a minimum path cover problem on directed graphs,
thus establishing a connection to the rich applied mathematics and
computer science field of graph algorithms. Besides revealing a struc-
tural property of vehicle-sharing networks, this connection allows the
derivation of computationally efficient algorithms for optimal vehicle
deployment and dispatching. Although optimally solving the mini-
mum fleet size problem requires offline knowledge of daily mobility
demand, in the following we also present a near-optimal, online version
of the algorithm that can be executed in real time knowing only a small
amount of the trip demand.

We are given a collection 7 of individual trips representing a portion
of urban mobility demand during a certain time interval, such as a day.
Each trip T, e T is defined as a tuple (t?, ¢, 1P, I?) wheret} repre-
cmrte tha Aacirad mialr 11 Fi1mmm TP 4+l 1 ~dr 11t Tvmmds mgn 2 $Tnm Asemin ~FE



I\|Vehicles

MES VS. #TRIPS

12000

10000

8000

6000

4000

2000

B
| | 20 I I | | |
| | R?2=0.42 ]
, 15|
[ 5000 | Bl /_
4000 | -fi)
/ &£ 10— 200 50 500 550 Mon d a V4
B 3000 3.’;0 460 45‘0 560 . < 10 B 7
Zw e Tuesday
e Wednesday
| | Thursday
T ® Friday i
> 7 Saturday
® Sunday
| | | | | 0 | | | I I
100 200 300 400 500 10° 0 100 200 300 400 500
ﬁ/
NTripS NT”pS

- 103



COMPARISON VS. NY TAXI

waiting to pick up
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Unparking
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MOTIVATION

Typical car is parked for over 95% of its lifetime

In busy time of day, cars spend up to 30% of driving time to look for parking
Los Angels County facts:

« 9.8 M people; 5.6 M cars; 18.6 M parking spaces (data from 2070)
« 140 sq miles of roads; 200 sq miles of parking (14% of total incorporated area)

Can the trend toward shared and autonomous mobility helps solving parking issues?



METHODOLOGY

Use cell phone data set to estimate mobility demand (home-work commuting)

Considered four scenarios:

 private car, private parking (today)

» private car, shared parking

» shared car, shared parking

» shared autonomous car, shared parking

homecnt
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0

Estimated home locations in Singapore



RESULTS

40% savings when compared
to reserved parking and
search radius of up to 500m
(shared cars)

60% savings with larger
search ranges (shared
autonomous cars)

Even more notable
considering that refer to
home-work commuting
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MORE GENERAL RESULTS

Figure 1




Pointiest Path



WHAT DO WE KNOW ABOUT PEDESTRIAN MOBILITY?

Studies so far performed in small-scale experiments, often in VR
environments
v' Performed in controlled environments to address specific research

hypothesis
v' Small-scale in both size of the environment and number of participants
v' Some basic candidate mechanisms for navigation (landmarks, mental
maps, etc.) identified

But what happens in the real world, e.g., pedestrian walking in a city?



REAL-WORLD PEDESTRIAN MOBILITY

Analysis of over 100,000
pedestrian paths (GPS) in

Boston and SF

C. Bongiorno, Y. Zhou, M. Kryven, D.
Theurel, A. Rizzo, P. Santi, J.
Tenenbaum, C. Ratti, “Vector-based
pedestrian navigation in cities’,

Nature Computational Science, 2021.
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VECTOR-BASED NAVIGATION
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VECTOR-BASED MODEL
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