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ABSTRACT 

COVID-19 has been widely considered as the greatest threat 

to global public health of the century. Urban areas with 

highly densified population have been worst hit in this 

pandemic.  It can be argued that various factors embedded in 

urban spatial structures play important roles in influencing 

people’s travel behavior, which further contributes to the 

transmission of COVID-19. This paper deploys machine 

learning models for exploring how various factors of urban 

spatial structure affect the distribution of the risk level of 

COVID-19. Linear regression models were applied for 

correlation analysis, the results of which shows that factors 

of land use and POI distribution are more correlated with 

COVID-19 risk distribution than others. Based on the 

correlation analysis, the eight variables, including land use, 

POI entropy, POI richness, population density, and distance 

to the breakout location, were selected for COVID-19 risk 

prediction models. Three risk prediction models were 

conducted using Random Forest (RF), Support Vector 

Machine (SVM) and Artificial Neural Network (ANN) 

respectively. As a result of the evaluation of these models, 

the ANN model achieved the best performance. Other latent 

factors related to the disease spread are also suggested to be 

considered for modelling the risk level prediction for future 

research. 
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1 INTRODUCTION 

COVID-19 is an emerged threat to human, especially for 

densified urban population in major cities. Factors such as 

land use planning [1], POI distribution [2] and transportation 

networks [3] have been recognized to have deep influence on 

travel behaviors and interactions of urban residents, which is 

believed to be accounted for the spreading of the virus [4]. 

An understanding of the transmission of COVID-19 in urban 

areas is critical since the risk level prediction results could 

aid the virus control process in decision-making. This paper 

builds upon the idea of deploying machine learning and deep 

learning models to explore the relationship between urban 

spatial structures and the risk level distribution of COVID-

19. 

1.1 Urban Studies on Epidemics 

The occurrence, transmission and affection of epidemics like 

COVID-19 is a complicated process. Researches from 

different aspects attempted to explain this mechanism.  From 

the climatic perspective, temperature, humidity and air 

pollution significantly correlate with the transmission of the 

virus [5]. From the social perspective, economic similarities 

and geographic proximities both play important roles [6]. 

More discussions focus on the relationship between urban 
spaces and epidemics. From the historical point of view, 

John Snow (1854) depicted a “Cholera Map”, which 

provided essential clues to the discovery of the cause of 

Cholera. The locations of the wells with contamination 

introduced the initial research methods for POI distribution. 

Back to COVID-19, Yaping Huang reflected on the spatial 

characteristics of employment center in downtown area of 

Wuhan (the breakout city of COVID-19). The single center 

of employment is a determinant factor for the concentration 

of the cases of COVID-19, which also accelerates cross-

region mobility, and speeds up the spread of the virus. 

1.2 Machine Learning Methods for Urban Studies 

Urban agglomerations are complex systems, which requires 

advanced methods to decode the patterns embedded in the 

systems. Machine learning and deep learning models have 

gained popularity due to their great advantages in solving 

complex non-linear questions. Over recent years, attempts of 

deploying machine learning and deep learning models for 

urban studies have been made in a variety of researches, such 

as urban land use mapping using Random Forest [7], eco-

environment system analysis [8] and vulnerability 

assessment using SVM [9], urban growth simulation using 

ANN [10], and land cover classification using CNN [11]. 

These data-driven models, compared to conventional 

knowledge-driven models, achieve better estimations based 

on quantitative measures of spatial associations between 

evidential features and prospective targets.  



 

1.3 Integration of Machine Learning Methods with 
COVID-19 Analysis 

After the outbreak of COVID-19, some researchers 

employed machine learning methods to simulate the spread 

of the epidemic in urban spaces. For example, indicators for 

the evaluation of COVID-19 were constructed using multi-

sourced data [12]. By using the GeoDetector and decision 

tree model, the study found that the older neighborhoods 

suffered higher risk level in contrast to newer 

neighborhoods, and the population density contributed most 

to infection. Also, a timely and novel methodology for 

COVID-19 forecasting was proposed [13]. The agent-based 

mechanistic model enabled the exploitation of geo-spatial 

activities and could be easily extended to most Chinese 

provinces. Both of the researches mentioned above aimed to 

make more effective response to COVID-19 situations ahead 

of time.  

This paper, employing multifaceted data, provides a novel 

application to integrate machine learning methods with 

COVID-19 prediction in urban areas. The principal objective 

is to use machine learning models of Random Forest, SVM 

and ANN to explore the influence and role of various spatial 

elements on the risk level of COVID-19 from a geographical  

 

perspective. Based on this prediction system, future research 

of scenario planning is prospective. 

2 METHODOLOGY 

The framework of this study is illustrated in Figure 1. We 

applied the following steps to identify the risk level in each 

TAZ. First, we collected the data from multiple sources, and 

constructed the database with multifaceted variables, 

including land use, POI diversity and population density. 

Second, we applied correlation analysis of the input 

indicators obtained from the previous step. Third, three 

machine learning models were constructed, including 

Random Forest (RF), Support Vector Machine (SVM), and 

Artificial Neural Networks (ANN). Then we evaluated and 

compared the performance of these three models. 

2.1 Data Preprocessing 

2.1.1 Unet for Land Use Classification 

Fully Convolutional Neural Networks allow for semantic 

segmentation to train pixel-based dataset for prediction. For 

image segmentation, Unet model is used. Unet contains: 1) 

    Figure 1. Research framework of each step for prediction. 



with the encoder half, detecting input image features by the 

process of down-sampling; and 2) with the decoder half, 

establishing output image features by the process of up-

sampling.  

2.1.2 Indices for Measuring POI Diversity 

Hill numbers was a form to unify diversity indices by 

ecologists. Yang considered Hill numbers (Richness, 

Entropy, and Simpson) as a better measurement of POI 

diversity for reflecting multifaceted, multidimensional urban 

land mixed use [2]. Hill numbers achieve diversity 

measurements by order q. When q = 0, 1, 2, it is the Richness, 

Entropy (orderliness), and Simpson (concentration) index 

respectively:  

                                                           (1)  

There is also another metric of diversity indices except for 

Hill numbers, namely Gini Coefficient (measuring 

distribution inequality):                             

                                  (2)  

2.2  Correlation Analysis 

Linear regression is a basic and commonly used type of 

predictive analysis. It is comprised of two parts: 1) to 

evaluate the overall performance of the independent 

variables for outcome prediction; and 2) to evaluate the 

significance of each variable contributing to the prediction. 

A multiple linear regression model can be written as:  

           (3)     

2.3  COVID-19 Risk Level Prediction Models 

2.3.1 Random Forest (RF) 

Random Forest is a supervised learning algorithm with 

bagging technique for regression and classification. It is 

operated by constructing multiple parallel decision trees in 

the training process. We select this algorithm because it can 

efficiently leverage a large number of features with high 

overall accuracy.                               

2.3.2 Support Vector Machine (SVM) 

Support Vector Machine is a supervised method with 

dichotomy classification of multidimensional features. The 

basic principle is to transform the input features into a 

higher-dimension space with linear separation. It is adopted 

because of its excellent properties of boosting generalization 

ability and global optimal solution.  

2.3.3 Artificial Neural Networks (ANN) 

Artificial Neural Networks is the most common method to 

develop nonparametric and nonlinear classification/ 

regression. The basic elements of an artificial neural network 

contain units (layers that connect information flow 

unidirectionally from the input layer, to the hidden layers and 

to the output layer) and nodes (interconnected with the 

corresponding links). To train an ANN model and to 

optimize the performance, it is needed to initialize the 

structure (number of hidden layers and nodes per layer), the 

weights, learning rate, and the regularization. 

3 DATASET AND EXPERIMENT SETUP 

3.1 Study Area 

The study area is located in the central area of Beijing, the 

capital city of China, where 280 COVID-19 cases were 

confirmed within 15 days, from June 11 to June 25, 2020. 

Combined with the distribution of middle-and-high risk 

street blocks, a study area of 25kmx35km was selected near 

the Sixth Ring Road in Beijing. In the study area, 619 TAZs 

were further identified to increase the amount of training 

samples. 

3.2 Sources of Data 

3.2.1 Remote Sensing and Geospatial Data 

The data deployed in this research is mainly collected from 

three sources, including Google Earth imagery, Gaode Map 

data, and Worldpop data, for risk level prediction. The 

Google Earth imagery consists of three bands (RGB), with a 

spatial resolution of approximately 2 meters. 

Geospatial data, including Gaode Map road networks and 

Gaode POIs, were used to complement HSR-image extracted 

features and enrich additional information for land use 

identification in the study area. POIs in our study were 

collected from Gaode Map Services, which is one of the most 

popular and largest web map service providers in China. We 

obtained POIs from 11 main categories in the study area via 

Gaode Map APIs, including accommodation service, living 

service, shopping service, sports and entertainment, medical, 

company, residence, education, transportation, tourist 

attraction, and dining. 

The population density data was obtained from the website 

of Worldpop. The online data has a raster format with a 

spatial resolution of 100 meters. Based on this, we obtained 

the average population density of each TAZ for the 

experiment in ArcGIS. 

3.2.2 Risk Level Data 

The locations of the 280 COVID-19 cases in the 15 days 

were identified from the official report by the Beijing 

government. To draw a high-grained map of its distribution, 

we collected 144 point locations according to the occurrence 

of these cases, and recorded in GIS with the weights of  their 

risk level. 

3.3 Construction of Database 

3.3.1 Land Use Variables 

To make the semantic segmentation label of HSR-image, we 

divided land use type into four categories, including 

residential area, commercial area, open area, and traffic area. 

After finishing the label, we trained the model with the U-net 

architecture, and obtained the map of land use classification 

in the study area. The label was divided into 80% training 

dataset and 20% validation dataset. The model was trained 



by Pytorch. Finally, we computed statistical proportion of 

different land use in each TAZ in GIS. 

3.3.2 POI Diversity Variables 

We used Python to calculate diversity indices of POI based 

on its density in each TAZ. With Richness, Entropy, and 

Simpson under the Hill numbers framework, as well as Gini 

Coefficient, we portrayed a more complete picture of mixed 

land use among neighborhoods by measuring POI diversity.  

 
Figure 2. Geographic visualization of initial variables in the study 

area (TAZ-based). 

3.3.3 Transportation Network Variables 

We applied the following three steps to identify the spatial 

structures in each TAZ. First, we extracted the road network 

information from Gaode Map, and calculated the average 

road density as a measurement of regional connectivity. 

Second, the average population density in each TAZ was 

obtained from the Worldpop raster data. Third, we collected 

the average distance to the COVID-19 breakout location 

(Xinfadi market) of each TAZ. This was based on the 

Euclidean distance calculation in GIS. 

3.3.4 COVID-19 Risk Variables 

IDW (Inverse Distance Weighted) is a commonly used and 

simple spatial interpolation method. It uses the distance 

between the interpolation point and the sample point as the 

weight to perform a weighted average. The closer the sample 

point is to the interpolation point, the greater will the weight 

be. Using this method, we transferred the distribution of 

COVID-19 cases into a raster format analysis. This 

transformation helped us to figure out the average risk level 

of each TAZ. Initial variables mapped in GIS are shown in 

Figure 2. 

3.4 Correlation Analysis of Input Variables 

Five models were used to examine the effects of 11 variables 

on risk level. Model 1 contained demographic variables 

(population density, and distance to the breakout location). 

For comparison purposes, Model 2 added road density as an 

additional independent variable. Model 3 added Hill 

numbers (Entropy, Richness, and Simpson) based on Model 

1, Model 4 extended Model 3 by adding Gini-coefficient, 

Model 5 extended Model 3 by adding land use type. 

Referring to the contrast experiments, we selected the most 

relevant indicators as the input of machine learning models. 

Table 1&2 illustrate the details of the variables and the 

contrast experiment.  

 

Table 1. Indictors used for correlation analysis. 

 

Table 2. Summary of independent variables used in the 5 models. 

3.5 Construction of Machine Learning Models 

3.5.1 Random Forest 

Standardscaler was initialized for the dataset. For the 

regression model, the parameters of 6, 7, 8 were set for the 

depth of the model; and 100, 200, 300 were set for the 

estimators of the model. Validation dataset counted for 20%. 

Gridsearch was deployed for detecting the best parameters. 

R2 Score performed as the benchmark.  

For the classification model, the dataset of 619 TAZs was 

divided into three categories including low risk level (184), 

middle risk level (349), and high risk level (86). SMOTE was 



used for the training sample. The parameters of 5, 6, 7, 8, 9, 

10 were set for the depth of the model; and 100, 200, 300 

were set for the estimators of the model. Validation dataset 

counted for 20%. Gridsearch was deployed for detecting the 

best parameters. Accuracy Score performed as the 

benchmark. 

3.5.2 Support Vector Machine 

Standardscaler was initialized for the dataset. For the 

regression model, the parameters of 1, 10, 100, 1000 were set 

for C in the model; and RBF was selected for kernel in the 

model. Validation dataset counted for 20%. Gridsearch was 

deployed for detecting the best parameters. R2 Score 

performed as the benchmark. 

For the classification model, SMOTE was used for the 

training sample. The parameters of le0, le1, le2, le3, le4, le5 

were set for C in the model. Validation dataset counted for 

20%. Gridsearch was deployed for detecting the best 

parameters. Accuracy Score performed as the benchmark. 

3.5.3 Artificial Neural Networks 

The more generalized regression model was adopted for 

ANN. The basic structure was with 8 input nodes, x number 

of hidden layers and y number of  nodes in each hidden layer, 

and 1 output node. We adjusted the value of x and y to seek 

for the best predicting result. The validation split was 20% 

with batch size of 100. All models run with 1000 epochs. 
Adam optimizer assisted the training process. Sigmoid and 

MSE served as the activation and loss function respectively.   

4 RESULTS 

4.1 Results of Correlation Analysis 

In the contrast experiment, the relative effect of input 

indicators are shown in Table 3. We selected four metrics to 

evaluate the effects of the 5 models, including adjusted R2, 

coefficient, standard error and t-statistic.  

Model 1 as the basic model, achieved 0.165 R-squared, with 

the effects of distance (0.420 std err) and population density 

(0.019 std err). Model 2 added road density as the variable 

while achieved lower R-squared (0.163), and no influence on 

the effects of distance and population density, which 

indicates the road density as a minor factor. Model 3, 

considering Hill numbers, approached to a higher R-squared 

(0.176) compared to the basic model, while at the same time 

elevated the effects of distance and population density. Also, 

the Hill numbers had significantly higher effects on the risk 

level. Model 4 added Gini-coefficient, which elevated the 

effects of POI diversity but lowered the overall R-squared 

(0.174). Model 5 supplemented four land use type. This 

model achieved the best performance with R-squared of 

0.192, and relatively higher input effects. Among these 

indicators, we finally determined eight variables (including 

distance, population density, POI richness, entropy, and land 

use type) as the input of machine learning models according 

to the evaluation metrics. 

 

Table 3. Regression results on the relationship between spatial 

elements and COVID-19 risk level. 

4.2 Results of Machine Learning Prediction 

Table 4 illustrates the results of different machine learning 

and deep learning models. The two machine learning models 

(RF and SVM) had relatively lower predicting accuracy 

compared to deep learning models (ANN). For the Random 

Forest regression model, it achieved 74.4% on training 

dataset and 47.6% on validation dataset. The best parameters 

by gridsearch was 7 for the model depth and 100 for the 

model estimator. With the classification model, it achieved 

94.1% on training dataset and 58.9% on validation dataset. 

The best parameters by gridsearch was 8 for the model depth 

and 200 for the model estimator. For the Support Vector 

Machine regression model, it achieved 46.2% on training 

dataset and 18.7% on validation dataset. The best parameters 

by gridsearch was 100 for C in the model. With the 

classification model, it achieved 93.1% on training dataset 

and 55.6% on validation dataset. The best parameters by 

gridsearch was 1.0 for C in the model.  

As shown in the results, Artificial Neural Networks had 

better predicting performance. For the regression model, it 

achieved 97.9% on training dataset and 85.5% on validation 

dataset. The best parameters were with 4 hidden layers and 

20 nodes in each hidden layer. 

 



 

Table 4. Predicting performance of different machine learning and 

deep learning models. 

5 DISCUSSION 

5.1 Correlation Analysis 

In the correlation analysis, population density is one of the 

vital factors related to COVID-19 risk level. Relevant 

researches show that the infection rate is strongly correlated 

with the population density, by conducting spatial regression 

models [14]. The distance to the breakout location also 

determines the exposure to the disease. The number of 

infection cases decrease with the distance growing. Thus 

social distancing and travel restriction support the prevention 

of COVID-19 spread.  

POI diversity (richness, entropy, simpson), as a measurement 

of urban land mixed use, advocates a balanced mode of 

public realm in the city. Mixed use, encouraged by theories 

such as sustainable development, regains concern due to its 

restoration of economic vitality, social equity and 

environmental quality [15]. Within a city neighborhood, the 

level of mixed use triggers human mobility with geographic 

centrality [3]. While the human mobility is one of the largest 

driven factors correlated with disease spread. As the results 

suggest, POI richness and entropy (orderliness) have a 

negative correlation with COVID-19 risk level. In other 

words, the neighborhoods with better functional quality 

possess lower potential of infection. This may be partially 

attributed to the less demand of cross-region mobility, which 

alleviates the human-to-human transmission. The main 

lesson from this result is the decentralization approach. It is 

highlighted that smaller urban units should be reasonably 

distributed and the local urban centers should be 

strengthened [16]. The decentralization approach could 

accelerate horizontal expansion, by maintaining sustainable 

development and resilient city planning in the future [17].  

Land use type (residential, commercial, traffic, and open 

space), also plays an important role on the risk level of 

COVID-19. Since the pandemic, many policymakers and 

planners try to increase the protection and defense system by 

avoiding high density and overcrowding. Especially for the 

residential areas, conventional housing with high density 

severely exacerbates the unhygienic conditions and the 

spread of communicable diseases. Under this context, green 

spaces such as urban parks serve as the essential intermediate 

buffers in the built environment. It affirms that urban parks 

and large open spaces can provide residents with safe 

outdoor activities and social interaction in a green 

environment, while at the same time maintain the health and 

quality of life [18].  

5.2 Machine Learning Prediction 

Among the machine learning and deep learning models, 

ANN achieved better results compared to RF and SVM. 

Relevant researches on using these models for predictions in 

urban studies compare and analyze their characteristics.  

Random Forest involves a lesser difficulty in training, and 

the prospective models are with greater ensembles [19]. 

However, ANN and SVM are more complex. The 

combination of parameters of kernel types in SVM is 

different for optimization. And the accuracy of ANN 

increases as the networks become more complex, i.e., 

increase of nodes in each hidden layer. Due to the 

performances, RF model outstands. There is a well-round 

discussion of the comparison between Random Forest and 

ANN, while the option depends [20]. The key criteria include 

performance, robustness, comprehensibility, cost and time 

expenditure. Although Random Forest is a better option in 

many practical applications, deep learning methods are still 

able to improve the quality given a large amount of data or 

complex situations.   

ANN has been used to predict the prevalence of COVID-19 

in some researches. The proposed model [21] can perform 

multi-step forecasts for further days with a reasonable 

absolute percentage error less than 5%. And the experiments 

can be transferred from Egypt to other countries. Also, the 

study presents a new method of intelligent curve fitting and 

forecasting for different non-linear models, by showing the 

results that ANN can efficiently train any set of country’s 

data trend for future cases [22].  

5.3 Future Research 

5.3.1 Scenario Planning 

The ANN model in the experiment achieved the ultimate 

accuracy of 85.5% which can be used to conduct the scenario 

planning research [10] in the following steps. Specifically, it 

can be observed how the risk level distribution in the study 

area would change based on the variations of the input spatial 

elements (land use, POI diversity, population, distance). 

Compared with doing risk level prediction with the existing 

urban data, the scenario planning research allows the 

planners and decision-makers to simulate the effect of future 

urban design on the potential risk level of pandemic. And this 

planning mode can also be transferred to other urban areas to 

assist intelligent decisions on smart cities.  

5.3.2 Model Optimization 

For the variable input, another two essential factors could be 

added to enrich the dataset of spatial elements. The first one 

is the place connectivity [23]. It delineates the relationship 

between neighborhoods by encoding place characteristics as 

node features and representing place connections as edge 

features. This variable can be taken into the current ANN 

model for better detection of spatial elements. The second 

one is the time variation [24]. A citywide spatio-temporal 

flow volume is predicted by dynamically learning the 

temporal dependency via the feedback connections. In our 

ANN model, we could adopt the GPS data, i.e. location-



based service (LBS) data from the mobile phones of the 

citizens, in order to demonstrate the real-time mobility in the 

city for predicting the risk level.  

For the model construction, some advanced version of deep 

learning models for predicting COVID-19 has been put 

forward since the pandemic. And these models can inspire us 

on optimizing the current ANN model. For instance, a novel 

framework of COVID-19Net is proposed, which combines 

CNN and GRUs to accurately predict the accumulated 

number of confirmed cases and serve as a crucial reference 

for devising public health strategies [25]. Also, agent-based 

simulations and deep-learning techniques are utilized to 

predict transportation trends in COVID-19, as well as the 

impact of proposed phased reopening strategies [26].  

5.3.3 Other Latent Factors 

The main purpose of this research is to detect the correlation 

between urban spatial elements and the risk level of COVID-

19, while other latent factors might have influence on the 

prediction. The natural environment such as the climate 

factors [5]; and the human environment such as the living 

quality of the old neighborhoods compared to the new 

neighborhoods [12], travel destinations and intensity [27], as 

well the government intervention, risk perception and the 

adoption of protective action recommendations [28], etc. can 

all contribute to the spread and risk level of COVID-19. How 

these latent factors are related to the current prediction 

process still deserves to be explored.                     

6 CONCLUSION 

In this paper, we perform a series of experiment to analyze 

the relationship between urban spatial elements and the risk 

level of COVID-19 from a geographical perspective by 

employing multifaceted data. Land use, POI diversity, 

population density and distance to the breakout location are 

major indicator to the risk level based on correlation analysis 

and serve as the input for further prediction model. Different 

machine learning methods are conducted and compared 

including Random Forest, Support Vector Machine, and 

Artificial Neural Network.  In our study, ANN achieves the 

best performance among the three models. Future research 

will focus on: scenario planning to better support the urban 

planners and decision-makers; model optimization to 

complement spatial elements such as place connectivity and 

time variation, as well as more advanced model construction 

for prediction; and adoption of other latent factors containing 

both natural environment (i.e. climate factors) and human 

environment (i.e. living quality, travel demands, and 

government intervention).  

We believe this project represents an important advancement 

of depicting the risk distribution of pandemic in urban areas 

from an intelligent view, thus further exploration is 

promising and encouraging for AI-assisted decision-making 

process for the risk-resilient system of future cities.  
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