

Prior Work

KEVIN LYNCH, ALLAN JACOBS, WILLIAM WHYTE

KEVIN LYNCH

Perceived urban image in Boston community

Perceptible urban elements

ALLAN JACOBS

Observing and Interpreting Naglee Park

Visual Cues of Gentrification

Digital turning point

THE CAT PROBLEM

FEI-FEI LI

How come a toddler can identify a cat and computers cannot?

FEI-FEI LI

Dataset of images + labels

Machine learning to train classifier (training dataset)

Evaluate classifier on new images (testing dataset)

ImageNet

14 million images annotated into 20,000
object categories
Benchmark to compare models

Image Classification on ImageNet

https://paperswithcode.com/sota/imag e-classification-on-imagenet

ADE20K

 25,574 images annotated at pixel-level into 150 categories

SCL Visual Al

PASSIVE, ACTIVE, CROWDSOURCED

Passive Data Collection

Treepedia

ENVIRONMENT, COMPUTER VISION

Moogle, Inc.

() - Street View - Aug 2017

Trader Joe's 🕤

Sheraton Boston 🗢

0 0

Rocin&Board

w.Ji

MUJI ****

100 m

Google

10

>

Al Perception Map

BUILT ENVIRONMENT, HUMAN PERCEPTION, DEEP LEARNING

Photo by Evgeniy Grozev on Pexels

Urban Perception Preference Dataset

 1,170,000 pairwise comparisons provided by 81,630 online volunteers

• 110,988 images from

56 cities, 28 countries, 6 continents

• Six perceptual dimensions:

Safety, Lively, Boring, Wealthy, Depressing, Beautiful.

Urban Perception Preference Dataset

Evaluating Perceptual Preference using Deep Learning

Zhang, Fan, Bolei Zhou, Liu Liu, Yu Liu, Helene H. Fung, Hui Lin, and Carlo Ratti. "Measuring human perceptions of a large-scale urban region using machine learning." *Landscape and Urban Planning* 180 (2018): 148-160.

Applying the model to new images

Evaluating Street View Images in China using Deep Learning

250,000 images of Beijing

• 140,000 images of Shanghai

(Q safe <= 3)

(3 < Q safe <= 7)

(Q safe <= 3)

What visual elements are associated with perceptions?

What visual elements are associated with perceptions?

Fan Zhang, Bolei Zhou, Liu Liu, Yu Liu, Helene H. Fung, Hui Lin, and Carlo Ratti. **Measuring human perceptions of a large-scale urban region using machine learning**. *Landscape and Urban Planning*, 180:148–160, 2018

Results:

- Greenery, vehicles, etc. are associated with positive perceptions
- Wall, buildings, large open sky, etc. are associated with negative perceptions

Active Data Collection

Infinite Corridor

NAVIGATION, COMPUTER VISION

MIT Campus

Data Collection

Building 1_C0		F		T				M
Building 1_C1			Y	K				
Building 2_C0	K	Ň	TOPI	PA			DA	
Building 2_C1			MC					
					•			
Building 32_L0								- HARRING AND
Building E25_C0								
Building E25_C1	F	T			T			
Building E25_L2								

Deep Convolutional Neural Network

What features did the model learn?

Class Label: Class Label: Class Label: 26 Class Label: 22 20 5 Building 5_C1 Location: Building 66_C0 Location: Location: Building 16_C0 Location: Building 7_L0 Corridor Corridor Corridor Type: Type: Type: Type: Lobby

Confidence:

0.996

Confidence:

0.999

Input images

Discriminative Regions

Results

Confidence:

0.997

Confidence:

0.999

What features did the model learn?

Input images

Discriminative Regions

> Informative Objects

Target:

Building 7_L0 Iron Main Doors Target:

Location: Building 7_L0 Iron Main Doors

Target:

Building 7_L0 Handrail

Handrail Target:

Location: Target:

Building 7_L0 **Ceiling Features** Target: Building 7_L0 **Ceiling Features**

Spatial Analysis – Building Similarity

Spatial Analysis – Building Distinctiveness

What makes the building look different?

Building 34_L0

Building 14_C1

Building 68_C1

Building 8_L1

Building 4_C0

Al Station

MOBILITY, SPATIAL PERCEPTION

-

This is Gare de Lyon, one of the largest train stations in France.

Google Earth

100,500,000 passengers/year

Show map of:

.

Mouse over the circles to see the zones connected to that area of the station

Smart Curbs

HUMAN DYNAMICS, COMPUTER VISION

Curbs are the urban asset of tomorrow.

Curbs are the urban asset of tomorrow.

Measuring Human Activity

Approach equip RATP buses with camerabased system

- 1. Computer Vision Model
- 2. Hardware Design

Testing AI Model in Paris Street - Example

Testing AI Model in Paris Street - Example

Crowdsourced Images

[In]Distinct Cities

TOURISM, VISUAL INFORMATICS

- Learning deep representations of urban scenes using deep learning
- Metric of similarity among cities; mining most representative image samples

- 36% accuracy in the 18-city image recognition task
- (Given any street image, there is a 36% probability of identifying the city it comes from)

Zhang, Fan, Bolei Zhou, Carlo Ratti, and Yu Liu. "Discovering place-informative scenes and objects using social media photos." *Royal Society open science* 6, no. 3 (2019): 181375.

City-informative Objects (vehicles)

- Globalization has led to cities around the world using the same vehicle brands and similar shapes; however, interestingly, the model still uncovers the vehicles that representative of each city, such as cabs, buses, police cars, etc.
- Other objects? Building façade, trees, store signs, and dressing styles, etc.
- Understand cities from a different perspective

http://senseable.mit.edu/indistinct_cities/

Instagram @Senseable_City_Lab

Facebook @SenseableCity

Twitter @SenseableCity Fan Zhang zhangfan@mit.edu

Fábio Duarte fduarte@mit.edu