Week 6

Visual AI in Practice

FAN ZHANG, MAORAN SUN, NIKITA KLIMENKO

11.S951

Senseable City: Data and Analytics

Mar. 11

Review

Image Classification

Image Object Detection

Image Segmentation

Review

• Treepedia

• Al Perception Map

• Infinite Corridor

Smart Curbs

Curbs are the urban asset of tomorrow.

• [In]Distinct Cities

Outline

- City
 - Helsingborg, Trieste, Paris, & Stockholm
- Data
 - Passive Image Collection GSV
 - Active Image collection Mobile Cameras
- Method
 - Machine Learning & CNN
 - Hands-on Demonstration
 - Image Classification
 - Image Object Detection
 - Image Segmentation

Helsingborg, Trieste, Paris, Stockholm

Study Sites

98, 693 panorama

21, 201 panorama

354,400 panorama

252, 024 panorama

City – Helsingborg

SAFETY, TIPPING POINT

Motivation

The International Crime Prevention Through Environmental Design Association

Crime and built environment

Hypothesis

Tipping Point Theory

Neighborhoods in bad physical condition will get progressively worse, whereas nicer areas will get better?

Data

Street view image

Police Record

Census data

Data - GSV

Perceived safe

Perceived unsafe

Data - GSV

Filter GSV data

Data - Police Record

	BROTTSKOD	BROTTSTEXT	BROTTSTID_START	BROTTSDAG_START	BROTTSTID_SLUT	BROTTSDAG_SLUT	C_CODE	E_CODE	Quarter
0	414	Ofredande mot grupp	01:15	torsdag	01:30	torsdag	0213	21300	2015 Q1
1	1203	Skadegörelse, annan skadegörelse (ej klotter)	NaN	torsdag	NaN	lördag	0561	56110	2015 Q1
2	429	Ofredande mot pojke under 18 år	NaN	torsdag	NaN	fredag	1931	193141	2015 Q1
3	428	Ofredande mot flicka under 18 år	NaN	torsdag	NaN	fredag	1931	193141	2015 Q1
4	1203	Skadegörelse, annan skadegörelse (ej klotter)	00:35	torsdag	00:35	torsdag	0834	83410	2015 Q1

Data source: Helsingborg Police Department

Data - Demographics

Unemployment rate

Average income

Daytime population

Age

Methodology - Perception

Result - Tipping Point Theory

AverageIncome

UnemploymentRate

Result - Tipping Point Theory

 $CrimeChange = \beta * GSVSafetyScore + \theta * BuiltEnvironment + \lambda * Demographics$

Dep. Variable: crime	change standardi	lze R-squar	ed:		0.092		
Model:	(DLS Adj. R-	squared:		0.069		
Method:	Least Squar	es F-stati	F-statistic: Prob (F-statistic): Log-Likelihood:		3.994 0.00179 -279.16		
Date:	Mon, 21 Feb 20	22 Prob (F					
Time:	20:24:	06 Log-Lik					
No. Observations:	2	204 AIC:		570.3			
Df Residuals:	1	98 BIC:					
Df Model:		5					
Covariance Type:	nonrobu	ıst					
	coei	std err	t	P> t	[0.025	0.975]	
Intercept	-1.388e-17	0.068	-2.05e-16	1.000	-0.133	0.133	
GSV_safety_standardize	-0.1872	0.076	-2.450	0.015	-0.338	-0.037	
daytime_population	0.2134	0.068	3.135	0.002	0.079	0.348	
aver_income_standardize	0.0517	0.082	0.633	0.527	-0.109	0.213	
unemployment_rate	0.1213	0.081	1.489	0.138	-0.039	0.282	
dist_to_center_standardiz	e -0.0290	0.076	-0.382	0.703	-0.179	0.121	
	168.764 I	Ourbin-Watson	in-Watson:		2		
Unitiduo.		0.000 Jarque-Bera (JB):			3		
Prob(Omnibus):	0.000	arque-bera (/-				
Prob(Omnibus): Skew:	-2.700 E	Prob(JB):		0.0	0		

OLS Regression Results

Data – Passive Collection

GOOGLE STREET VIEW

Street View Images

Image credit: Google

How Google collects data

□ Street View Car

Street View Trolley

Street View Trekker

Street View Service

Image credit: wikipedia

Google Street View

Image credit: Google

GSV Perspectives

Natural view

(a)

Panoramic view

(b)

https://maps.googleapis.com/maps/api/streetview/metadata?location={}&key={}

Location

lat,Ing

Key Do not share with others!

Example 1

https://maps.googleapis.com/maps/api/streetview?size={width}x{height}&pano={}&heading={}&pitch={}&fov={}&key={}

Size Max size: 640 * 640 Pano Unique panoID

location

Unique panoID

Heading 0 - 360 degree North: 0 East: 90 South: 180 West: 270 Pitch -90 - 90 degree Straight up: 90 Stright down: -90

FOV Max value: 120 Default: 90 Key
Do not share with others!

Example 2

Large-scale GSV Download Process

Download street network

Generate request point

Get image meta data

Download image

Large-scale GSV Download Example

Download street network

Generate request point

Tutorial for GSV collection

https://colab.research.google.com/drive/1o2cB5WuvF4vmsukeZsxTCx4ePr7jECpA?usp=sharing

Data – Active Collection

MOBILE SENSEING, CAMERA

Self-collection

Wearable Camera

GoPro

□ Vehicle Mouted

□ Device

https://www.google.com/streetview/contacts-tools/

Method – Deep Learning

MACHINE LEARNING, NEURAL NETWORK
AI vs. ML. vs DL

Supervised Learning

enjoy algorithms

Linear Regression

Neural Network

Training a neural network

For a fixed architecture, a neural network is a function parameterized by its weights

• Given

A network architecture (layout of neurons, their connectivity and activations)

- A dataset of labeled examples

• The goal: Learn the weights of the neural network

Neural Network - multilayer perceptron

Why Deep Learning?

44.00 polesign person person an person person person person person person person bicycle handbag handbag

□ Image Object Detection

□ Image Segmentation

- Reconstruction of the high resolution imagery from the observed low resolution image
- Applications: surveillance video, medical imaging, satellite imagery

□ Style Transferring

Style Transferring for Image Generation

□ Image Captioning □ Text-to-image Generation

A computer screen with a Windows message about Microsoft license terms.

A can of green beans is sitting on a counter in a kitchen.

A hand holds up a can of Coors Light in front of an outdoor scene with a dog on a porch.

A digital

thermometer resting on a wooden table, showing 38.5 degrees Celsius.

stormy sky above. A Winnie The Pooh character high chair with a can of Yoohoo

of a white wall.

in front of some

homes with a

A blue sky with fluffy clouds, taken from a car while driving on the highway.

A cup holder in a car holding loose change from Canada.

- 6.036 Introduction to Machine Learning
- 6.S191 Deep Learning
- 6.801 Machine Vision
- 6.819 Advances in Computer Vision

Hands-on session

IMAGE CLASSIFICATION OBJECT DETECTION IMAGE SEGMENTATION

Google Colab

lanie	•	Owner
Ð	scene classification	1777
Ð	YOLO	me
	deeplabv3_xception65_ade20k.b5 45	me
-	Demo 1. Scene Classification.jpjnb 45	me
0	Demo 2: Object Detection lpynb 4%	IT:0
0	Demo 3 Image Segmentation.lpynb 45	ma

3	Code + Text	
•	Scene Classification	
	Current tutorial from: https://wvian.ai/shakirtussain2020/intel-scene-classification-ovtorch-crin	
14	<pre>(1) 1 from google.colab import drive 2 drive.mount('/<u>content/drive</u>') 1 import as 4 os.chdir('<u>/content/drive/My Brive/sci-class</u>/')</pre>	
	Mounted at /content/drive	
N.F.	<pre>[2] 1 Import as 2 DATA_DIR - 'scame classification/dataset' 3 print(os.listdir(DATA_DIR)) 4 print(os.listdir(DATA_DIR))</pre>	

- Input: 224x224 images
- Output: 5x1 label vector

wood

ResNet 121 architecture

Batch

Demo 1:Classifier

Go to Google Drive and Open Demo 1.ipynb

Demo 2: Image-to-Image Networks

Architecture

- Input and output are both images
- Produced image compared to target image pixel-by-pixel
- Has a narrow 'bottleneck' layer to encourage extraction of most important features

Applications

- Style transfer
- Denoising
- Image abstraction
- Produce segmentations, masks

Image-to-Image Networks: Wind Heatmaps

Target

Network Outputs

Demo 2:Image->Image

Go to Google Drive and Open Demo 2.ipynb

Demo 3: Object Detection

COCO Dataset

- 330 000 images
- 91 object categories
- 250 000 people

"person", "bicycle", "oar", "monorcycle", "airplans", "bus", "train", "truck", "boor, "traffic light", "fire hydrant", "stop sign", "parking meter", "hendb", "giraff", "based, "sheep", "onew", "airplans", "base,", "rabes", "giraff", "basebpeck", "morells", "handbag", "tis", "sintase", "firstbee", "skiteboord", "surfloard", "ponte bell", "kite", "basebell bit", "basebell glove", "sinteboord", "surfloard", "panis racket, "bottle", "kine glass", "oug", "fork", "wnifs, "spoon", "bood", "banus", "split", "anabuin", "ouch", "ported plant", "based, "doining table", "basebell, "bout", "ported plant," "bed", "dining table", "toilet", "to "sarted", "surfly, "remote", "kyboadd", "cellok", "twee, "anisonate", "baseter", "bard cire", "cock", "cellok", "twee, "anisonate", "teday beet, "hair dire", "toothund"

"nose", "left_eye", "right_eye", "left_ear", "right_ear", "left_shoulder", "right_shoulder", "left_elbow", "right_elbow", "left_wrist", "right_wrist", "left_hip", "right_hip", "left_knee", "right_knee", "left_ankle", "right_ankle"

1) Image Classification

2) Object Localization

3) Semantic Segmentation

Demo 3: Object Detection

 YOLO – 'You Only Look Once' Convolutional Neural Network Input: 224x224 image Output: 7x7x30 tensor

Class probability map
Demo 3: Detection

Go to Google Drive and Open Demo 3.ipynb

Demo 4: Image Segmentation

- ADE20k Dataset
 - 27 000 Images, 3000 Object Categories, 150 Semantic categories, 193,238 annotated objects, polygon annotations
 - By MIT CSAIL

Demo 4: Segmentation

Go to Google Drive and Open Demo 4.ipynb

In-Class assignment

GSV Downloading and Image Segmentation

In-class Practice

(In Google CoLab)

1. Download GSV of a small area (or use images from the last GSV downloading assignment);

2. Using **image segmentation** to process these images, show the data structure of the mask of one image sample;

3. Calculate the ratios of some objects (tree, cars, etc.), and **aggregate the results from all images** together. The final results could be, for example, the greenery ratio of all images of Mass. Ave., Cambridge.